The past several years have seen growing evidence for the key roles of thiol-based redox processes in major metabolic pathways. Thiol-based redox processes regulate a variety of biological functions, such as protection against oxidative stress, signal transduction, protein folding and modification. While mechanistically similar, thiol-dependent redox processes involve structurally distinct families of enzymes called thiol oxidoreductases. We developed thiol oxidoreductases identification approach and identified a whole set of thiol oxidoreductases in 852 completely sequenced organisms including yeast thiol oxidoreductases set, and demonstrated that number of thiol oxidoreductases is linearly growing with proteome size [1]. Such trend is typical for signaling machinery components in the cell. Further experimental analysis of computation results shown a key role of thiol peroxidases, subfamily of thiol oxidoreductases, in hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) mediated signaling in \textit{Saccharomyces cerevisiae} [2]. This type of signaling is a critical process in nearly all organisms. Environmental or metabolically formed H\textsubscript{2}O\textsubscript{2} is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxide and inhibit H\textsubscript{2}O\textsubscript{2} response. We found that \textit{Saccharomyces cerevisiae} cells lacking all eight thiol peroxidases were viable and withstood redox stresses. They transcriptionally responded to various redox treatments, but were unable to activate and repress gene expression in response to H\textsubscript{2}O\textsubscript{2}. Further studies involving redox transcription factors suggested that thiol peroxidases are major regulators of global gene expression in response to H\textsubscript{2}O\textsubscript{2}. Our data suggest that thiol peroxidases sense and transfer oxidative signals to the signaling proteins and regulate transcription, whereas a direct interaction between H\textsubscript{2}O\textsubscript{2} and other cellular proteins plays a secondary role.

This study was supported by NIH-NCRR P20 RR-17675 Nebraska Redox Biology Center grant.