Tandem segmentation-classification approach for localization of morphological predictors of *C. elegans* lifespan and movement

Yakimovich, A
Artificial Intelligence for Life Sciences CIC, London, United Kingdom, ayakimovich@ails.institute
Galimov, E.R.
Artificial Intelligence for Life Sciences CIC, London, United Kingdom, egalimov@ails.institute

C. elegans is an established model organism for studying genetic and drug effects on ageing, many of which are conserved in humans. It is also an important model for basic research, and *C. elegans* pathologies is a new emerging field. Here we develop a proof of principal convolutional neural network-based platform to segment *C. elegans* and extract features that might be useful for lifespan prediction. We use a dataset of 734 worms tracked throughout their lifespan and classify worms into long-lived and short-lived. We designed a WormNet convolutional neural network (CNN) to predict the worm lifespan class based on young adult images (day 1 – day 3 old adults) and showed that WormNet as well as InceptionV3 CNN can successfully classify lifespan. Based on U-Net architecture we develop HydraNet CNNs which allows accurately segment worms into anterior, mid-body and posterior parts. We combine HydraNet segmentation, WormNet prediction and use the class activation map approach to determine the segments most important for lifespan classification. Such a tandem segmentation-classification approach shows posterior part of the worm might be more important for classifying long-lived worms. Our approach can be useful for the acceleration of anti-ageing drug discovery and for studying *C. elegans* pathologies.